
Protocol Failure in the Escrowed Encryption Standard

Matt Blaze

AT&T Bell Laboratories

mab@research.att.com

August 20, 1994

Abstract

The Escrowed Encryption Standard (EES) defines
a US Government family of cryptographic processors,
popularly known as “Clipper” chips, intended to pro-
tect unclassified government and private-sector com-
munications and data. A basic feature of key setup be-
tween pairs of EES processors involves the exchange of
a “Law Enforcement Access Field” (LEAF) that con-
tains an encrypted copy of the current session key. The
LEAF is intended to facilitate government access to
the cleartext of data encrypted under the system. Sev-
eral aspects of the design of the EES, which employs a
classified cipher algorithm and tamper-resistant hard-
ware, attempt to make it infeasible to deploy the sys-
tem without transmitting the LEAF. We evaluated
the publicly released aspects of the EES protocols as
well as a prototype version of a PCMCIA-based EES
device. This paper outlines various techniques that
enable cryptographic communication among EES pro-
cessors without transmission of the valid LEAF. We
identify two classes of techniques. The simplest al-
low communication only between pairs of “rogue” par-
ties. The second, more complex methods permit rogue
applications to take unilateral action to interoperate
with legal EES users. We conclude with techniques
that could make the fielded EES architecture more
robust against these failures.

1 Introduction and Background

In April 1993, the Clinton Administration an-
nounced a proposed new federal standard symmetric-
key encryption system for the protection of sensitive-
but-unclassified government and civilian data [Mar93].

c© 1994. This is a pre-print of a paper to appear at the 2nd

ACM Conference on Computer and Communications Security,

Fairfax, VA, November 1994.

The proposal, called the Escrowed Encryption Stan-
dard (EES) [NIST94], includes several unusual fea-
tures that have been the subject of considerable de-
bate and controversy. The EES cipher algorithm,
called “Skipjack”, is itself classified, and implemen-
tations of the cipher are available to the private sec-
tor only within tamper-resistant modules supplied by
government-approved vendors. Software implementa-
tions of the cipher will not be possible. Although Skip-
jack, which was designed by the US National Security
Agency (NSA), was reviewed by a small panel of civil-
ian experts who were granted access to the algorithm,
the cipher cannot be subjected to the degree of civilian
scrutiny ordinarily given to new encryption systems.

By far the most controversial aspect of the EES
system, however, is key escrow. As part of the crypto-
synchronization process, EES devices generate and ex-
change a “Law Enforcement Access Field” (LEAF).
This field contains a copy of the current session key
and is intended to enable a government eavesdropper
to recover the cleartext. The LEAF copy of the ses-
sion key is encrypted with a device-unique key called
the “unit key”, assigned at the time the EES device is
manufactured. Copies of the unit keys for all EES de-
vices are to be held in “escrow” jointly by two federal
agencies that will be charged with releasing the keys
to law enforcement under certain conditions.

At present, two EES devices are being produced.
The simplest, the Clipper chip (also known as the
MYK-78), is essentially a drop-in replacement for a
conventional DES [NBS77] chip and relies on key nego-
tiation being handled off the chip. The other EES de-
vice, the Capstone chip (MYK-80), adds built-in sup-
port for public-key negotiation and digital signatures,
with modular arithmetic functions, random number
generation, and other such features.

The interface to the Skipjack cipher is similar to
that of DES, based on a 64 bit codebook block cipher
and supporting FIPS-81 [NBS80] standard modes of
operation. Keys are 80 bits in length, as opposed to
DES’s 56 bits.

The initial application of EES is in stand-alone
voice encryption telephone units, such as the AT&T



Model 3600 Telephone Security Device. To facilitate
computer applications such as electronic mail and file
encryption, a version of the Capstone chip will also
be available packaged in a standard PCMCIA card.
EES PCMCIA cards can be installed easily in many
commercially available laptop computers, and SCSI-
based PCMCIA card readers can connect EES cards
to most other computers. The government has spec-
ified a standard application interface library for com-
municating with the cards.
Clipper and Capstone chips are, at present, avail-

able only for use in approved products that comply
with LEAF handling requirements. EES PCMCIA
cards, on the other hand, are themselves a stand-alone
product, and are to be made generally available “off
the shelf” in the United States.
The government has stated that the goal of the

EES is to make a strong cipher available for legitimate
use without supplying criminals and other adversaries
with a tool that can be used against American in-
terests or to hide illegal activities from law enforce-
ment. Thus the system is intended to be difficult to
deploy without also sending a valid LEAF and thereby
exposing the traffic to the possibility of government
monitoring. In this paper, however, we show that it
is possible to construct applications that can enjoy
use of the Skipjack cipher but that do not admit law
enforcement access through the LEAF. For the pur-
poses of this paper, we consider two classes of “rogue”
EES applications: those that can communicate only
with other rogue systems and those that can success-
fully interoperate with EES “legal” systems as well.
The latter category especially threatens the goals of
the EES program, since such rogue applications would
be operationally equivalent to their legal counterparts
without being subject to government access.

1.1 LEAF Structure and Protocols

The LEAF is a 128 bit structure containing enough
information for law enforcement recovery of the ses-
sion key with the cooperation of the two agencies hold-
ing the unit key database. The structure contains a
32 bit unique unit identifier (the serial number of the
chip that generated the LEAF), the current 80 bit ses-
sion key (encrypted with the device’s unit key) and a
16 bit LEAF checksum. The entire structure is en-
crypted with a fixed “family key” to produce the final
LEAF message. All cryptographic operations employ
symmetric (secret) key techniques. The family key is
shared by all interoperable EES devices. The family
key, the encryption modes used to encrypt the unit
key and the LEAF message, and the details of the
checksum are all secret. Externally, the LEAF is an
opaque 128 bit package. See Figure 1.
To decrypt EES traffic, a law enforcement agency

Unit ID Encrypted Session Key chksum

Session key

80 bits

32 bits 80 bits

128 bits

(unit key)

(global family key)

Skipjack encrypt

Skipjack encrypt

IV & other variables

16 bits

LEAF

16 bit checksum

function

Figure 1: LEAF Structure

first must intercept the LEAF and the traffic itself
using conventional data wiretapping technology. The
LEAF is decrypted with the family key, revealing the
chip serial number, the unit key-encrypted session key
and the LEAF checksum. The chip serial number is
provided, with appropriate authorization, to the two
escrow agencies, which each return half of the unit key
for the given serial number. The two half-unit keys can
be combined (by bitwise exclusive-or) to produce the
unit key, which the law enforcement agency can then
use to decrypt the session key. This session key can
then be used to decrypt the actual traffic.

The wiretapping system thus relies on the availabil-
ity of the LEAF along with the encrypted traffic. To
force applications to send the LEAF on the same chan-
nel as the traffic, EES devices will not decrypt data
until they have received a valid LEAF for the current
session key. Presumably, EES devices perform various
integrity checks on received LEAFs prior to accepting
them.

To provide a convenient application interface for
LEAF management, EES devices generate and load
LEAFs along with the FIPS-81 initialization vectors
(IVs). The devices provide “generate IV” and “load
IV” functions that operate on 192 bit fields containing
an unencrypted 64 bit IV concatenated with the 128
bit encrypted LEAF. The load IV operation fails if the
associated LEAF does not pass an integrity check.



1.2 Experimental Observations

Most details of the LEAF creation method, encryp-
tion modes, and data structures, beyond those men-
tioned above, are classified and are therefore unknown
to us. In particular, the EES standard does not specify
the exact mechanism that enforces the transmission of
the correct LEAF. However, we were able to perform
a number of simple experiments on our prototype de-
vices to confirm and expand our knowledge of LEAF
internals. All experiments were performed at the pro-
tocol level through the standard interface and did not
involve cryptanalysis or direct hardware “reverse en-
gineering.” We summarize our observations below.

• LEAF integrity is verified entirely via redundancy
in the checksum field. In general, attempts to
load an incorrect LEAF fail. This must be due
entirely to the checksum field and not through di-
rect verification of the unit ID or encrypted ses-
sion key; the receiving chip cannot confirm the
correctness of the unit ID or encrypted session
key fields since it does not know the unit ID or
unit key of the sender. Therefore, the LEAF must
be testable by the receiver based only on known
information (such as the cleartext session key and
IV) included in the checksum computation.

• LEAF checksum computation includes (implicitly
or explicitly) the current IV. The LEAF changes
whenever a new IV is generated for a given session
key. Since the IV is not included directly as one of
the LEAF fields, it must influence the checksum.
Furthermore, the receiving device refuses to load
the wrong IV for a given LEAF.

• LEAF checksum computation includes the clear-
text of the current session key. Attempts to load
a LEAF (and corresponding IV) from a previous
session key fail. It is therefore not possible to “re-
use” a LEAF generated from an old session key,
even though the LEAF itself appears internally
consistent.

• LEAF checksum computation includes other
parts of the LEAF. Attempts to load LEAFs with
a single bit inverted anywhere in the 128 bit struc-
ture fail.

• LEAF encryption diffuses its input throughout
the entire 128 bit structure. The LEAF structure
or encryption mode is not exactly as specified in
released documents. Generating a new IV for a
given session key causes changes across the entire
LEAF. Recall that the EES codebook size is 64
bits, and so encryption of the LEAF involves at
least two block encryptions. Since the IV affects

only the checksum, and the checksum appears at
the end of the LEAF in public documents, we can
conclude that at least one of the following is true:

– The LEAF is encrypted with a non-standard
mode in which cleartext in “late” blocks af-
fects the early ciphertext.

– The LEAF is encrypted with a standard
forward-chaining or stream mode but the
checksum appears in the first cipherblock of
the LEAF.

– The LEAF is encrypted with a standard
forward-chaining or stream mode but the
current session IV is itself used to initialize
it.

• The LEAF checksum is, in fact, 16 bits. A brute-
force search of the LEAF space for a valid LEAF
requires about 216 operations. See the discussion
of interoperable rogue applications below.

2 Non-interoperable Rogue Applica-

tions

First, we consider the problem of constructing a
set of applications that use Skipjack to communicate
among themselves without key escrow. We are free to
use any method permitted by the EES processor in-
terface without regard for standard usage. Since such
applications may be restricted to communicating with
other rogue systems, their general utility is somewhat
limited, although they still violate the intent of the
EES.
Several approaches can easily circumvent the law

enforcement access mechanism, with a range of prac-
ticality and tradeoffs.

2.1 LEAF Obscuring

The simplest approach is to take steps to ensure
that the eavesdropper cannot recover the LEAF or
the encrypted traffic. One option is pre- or post- en-
cryption of the traffic with another cipher. It is not
clear, however, what the attacker gains from doing
this, since if the second cipher is believed strong there
is no need to use Skipjack in the first place, and if it is
believed weak it does not protect the traffic from the
government anyway.
A refinement on this approach encrypts only the

LEAF. A LEAF encryption scheme could be inte-
grated into a key exchange protocol that produces
“extra” shared secret bits (such as Diffie-Hellman
[DH76]). Since only 80 bits are required for the Skip-
jack session key, 128 of the other bits could be used



as a Vernam cipher against the LEAF. Note that
this scheme is not directly implementable with the
EES PCMCIA card key exchange protocol, which does
not permit external access to the negotiated key bits.
However, an additional key exchange could be per-
formed in software on the host processors.
Another option is to negotiate keys (and LEAFs)

out-of-band or in advance. While it is not clear that
there is any way EES could prevent such an attack,
neither is such a scheme very useful in practical ap-
plications. Users would never be able to communi-
cate securely without pre-negotiation or the use of a
trusted channel. If a trusted channel existed, it could
be just as easily used for the traffic itself. For some ap-
plications, however, such as bulk file encryption, pre-
negotiated keys may be practical.

2.2 LEAF Feedback

Another possible approach is to avoid sending the
LEAF altogether. Depending on the cryptographic
mode this can be surprisingly simple. Recall that
LEAFs are generated and loaded along with the IV.
While applications cannot easily force the chip to use
an externally-chosen IV, they can easily generate a
new one. Upon negotiation of a session key, the re-
ceiving side of a rogue application can simply generate
a new IV/LEAF and feed it back to itself, the sender
never having sent the IV/LEAF at all. This still leaves
the problem of IV synchronization. Because IVs can-
not be loaded without a LEAF and LEAF checksums
appear to be bound to the IV, sender and receiver have
no way to communicate a directly loadable IV without
also communicating the corresponding LEAF. Most
cryptographic modes require the sender and receiver
to synchronize on the IV. This is not an insurmount-
able problem, however. It is possible to compose effi-
cient implementations of each FIPS-81 cryptographic
mode in terms of other modes without explicitly load-
ing the sender’s IV at the decrypting side. Let us con-
sider “LEAF feedback” schemes for each commonly
used cipher mode.

2.2.1 Electronic Code Book (ECB)

In ECB mode, there is no IV (or, more properly, the IV
does not affect the cipher in any way). The primitive
block cipher is used directly, without chaining or feed-
back from other blocks. LEAF feedback is therefore
simple – each side generates an IV/LEAF immediately
after the key is negotiated and loaded, and uses ECB
mode for communication. The fact that sender and
receiver generated different IVs does not matter.
ECB mode is itself vulnerable to a number of well-

known attacks and is not considered suitable for gen-
eral use.

2.2.2 Cipher Block Chaining (CBC)

In CBC mode encryption, the cleartext of each block
is first exclusive-ORd (XOR) with the ciphertext of
the previous block and then encrypted with the block
cipher function. The first block is XORd against
the IV. Decryption reverses the process, applying the
XOR function after the ciphertext has been decrypted
with the block cipher function. CBC mode is “self-
synchronizing” in that decryption can recover from
missing or damaged ciphertext blocks. Since success-
ful decryption of a block depends only on receiving
the previous block’s ciphertext, loss of the IV only af-
fects the first block. LEAF feedback with a new IV,
therefore, corrupts the first block but this can be eas-
ily compensated for by prefixing one “dummy” block
to the message, to be discarded by the receiver.

2.2.3 Cipher Feed Back (CFB)

CFB mode uses the result of successive encryption
through a shift register (initialized with the IV) as
a keystream generator. The block encrypt fuction is
used to generate the stream, which is XOR mixed with
the datastream for both encryption and decryption.
The shift register input is “fed” with the ciphertext
stream from previous blocks. The stream depends en-
tirely on the key and the previous blocks of ciphertext.
CFB can be implemented based on ECB mode with
an external shift register and IV. This requires one
call to the EES device for each cipherblock. Exper-
iments with this method with a prototype EES card
suggest that this method carries a significant band-
width penalty, however, since each ECB call to the
card takes about 38ms and a separate call is required
for each 8-64 bit block of the stream.
A more efficient implementation takes advantage

of CFB’s limited error propagation. CFB mode, like
CBC mode, is self-synchronizing, with complete re-
covery from missing or damaged ciphertext once the
shift register has exhausted. CFB can therefore re-
cover from an incorrect IV. The sender can prefix a
“dummy” block to the ciphertext input stream and the
receiver can feed back a freshly generated, random IV
and employ a bulk CFB block decrypt directly (just
as with CBC mode).

2.2.4 Output Feed Back (OFB)

OFB mode also uses the result of successive encryp-
tion through a shift register (initialized with the IV)
as a keystream generator. The block encryption func-
tion is used to generate both the encrypt and decrypt
streams. Subsequent stream values are not affected by
the data. Note that the entire stream depends on the
key and IV and therefore requires that both sender
and receiver be able to load the same IV to generate



the same streams. LEAF feedback cannot therefore
use OFB mode directly, since the stream will never
recover from an incorrect IV. However, OFB mode
can be simulated using the ECB block encrypt func-
tion and an externally implemented shift register and
stream XOR mixer. The IV must still be sent to the
receiver (without the LEAF, of course) to initialize
the external shift register. This method carries a high
performance penalty, just as with the manual imple-
mentation of CFB mode described above.

A more efficient method exists to generate an OFB
stream, however, using Cipher Feed Back (CFB) mode
to simulate the stream generator for large blocks. The
sender generates an IV/LEAF and encrypts with OFB
mode directly in the standard manner and sends only
the IV to the receiver. Two passes are required on the
receive side. First, the receiver generates a new IV
and LEAF and encrypts a single block of all zeros with
CFB mode. Now the receiver can recreate the sender’s
OFB keystream mask for n blocks by CFB encrypting
n blocks of zeros prefixed with the block created in
the previous step XORd with the real IV. The sub-
sequent blocks, after CFB encryption, can be XORd
with the ciphertext (shifted by one block) to recover
the cleartext. Note that while the XOR mixing must
be performed separately on the host processor, only
two calls to the EES device are required to decrypt an
arbitrary length ciphertext (up to the maximum block
decrypt size supported by the devices).

3 Interoperable Rogue Applications

A more interesting (and useful) class of rogue appli-
cations includes those that can interoperate with “le-
gal” peers (those that make no effort to circumvent the
escrow system), still without allowing law enforcement
access. Such applications have much greater utility
(and are a much greater threat to the escrow system)
than non-interoperable rogues, because they have all
the benefits of interoperability with other EES devices
without the risk of exposure to wiretapping.

In the previous section, we discussed techniques for
rogue applications to communicate with one another
without sending the LEAF. Such applications could
be modified to adapt their behavior to send the LEAF
only when communicating with a legal peer. A sim-
ple way to construct such an application is to “test
the water” by sending the peer device a bogus LEAF
and then, if the exchange fails (because the peer is op-
erating legally), sending a valid LEAF. Such a “two
phase” protocol is not completely satisfactory, how-
ever, because it still renders traffic vulnerable to LEAF
monitoring when communicating with legal applica-
tions. Furthermore, such a protocol cannot work with

non-interactive applications such as electronic mail,
file encryption, fax, etc.
A more general approach is to construct a LEAF

field that will be accepted as valid by the receiver but
that does not actually contain the encrypted session
key.

3.1 Brute-Force LEAF Search

Recall that the LEAF structure contains three com-
ponents: the unit serial number of the transmitter, the
unit key-encrypted session key, and a 16 bit checksum,
all encrypted as a block under the family key. Because
the receiving chip knows only the session key, the IV,
and the family key, but not the other chip’s unit key
or serial number, LEAF verification must be entirely
on the basis of the 16 bit checksum. The checksum,
which is presumably based only on the session key, IV
and other LEAF data, cannot be extracted from or
inserted into a LEAF without knowledge of the fam-
ily key (and the encryption mode). It is therefore not
possible for a rogue application to extract the check-
sum from a valid LEAF and re-insert into an invalid
LEAF, or to damage only the encrypted session key
in an otherwise-valid LEAF.
A rogue sender could simply use a different session

key when generating the LEAF; this LEAF would ap-
pear internally consistent with a valid checksum but
would contain the wrong session key. “Old” LEAFs
are detected and rejected by the receiving chip, how-
ever, apparently by using the cleartext of the session
key (rather than the unit-key encrypted session key)
in the computation of the LEAF checksum.
Since the checksum is only 16 bits in length, how-

ever, another attack is possible.1 For any session key
and IV, 2112 of the 2128 possible LEAF structures will
appear to have a valid checksum. Because the pro-
cess of decrypting a randomly generated LEAF with
the family key will tend to randomize the decrypted
bits in the checksum field, any randomly generated
128 bit string will have a 1/216 chance of appearing
valid for the current session key and IV. Note that
the sending chip, like the receiving chip, has a built-
in LEAF-testing facility. Once a session key has been
negotiated, an attacker can use the local EES device
to find a valid-looking-but-invalid LEAF with an ex-
pected average of 216 trials. This attack appears to be
feasible in practice.
Such a randomly generated LEAF structure will be

accepted as valid by the receiving chip and will enable
EES communication. The traffic will not be subject
to LEAF-based wiretap access, however. When the

1The first observation that LEAF checksums may be vulner-

able to brute-force spoofing appears have been independently

made by Ken Shirriff in a posting to the “sci.crypt” Usenet

group on January 27, 1994.



wiretapper decrypts the rogue LEAF with the family
key, the checksum field will appear valid but the unit
identifier and encrypted session key fields will contain
only random bit strings.

3.2 Experimental Results

We measured the time to test randomly selected
LEAFs on an EES PCMCIA card. All experiments
were conducted with a Mykotronx prototype EES card
connected through a Spyrus SCSI PCMCIA reader to
a Sun Sparc-10 host running SunOS 4.1.3. We made
no effort to optimize the communication with the card
or library, using the standard prototype PCMCIA li-
brary and device drivers as delivered. Recall that
the EES PCMCIA interface is fairly loosely-coupled
to the host processor and supports a more restricted
set of cryptographic operations than the basic Clip-
per/Capstone chips themselves. Therefore, LEAF-
testing operations on the PCMCIA card are inherently
slower than the same operations on a more tightly-
coupled EES device or on a special-purpose host with
a built-in EES processor. It is also possible that com-
munication with the card can be made faster with
the more tightly-coupled PCMCIA interfaces found
on most laptop computers. The communication time
with the card interface dominates the cost of most
operations in the environment we examined; host pro-
cessor speed was not a significant determining factor.
We assume our results to be approximately represen-
tative of typical implementations in a worst-case en-
vironment.
Our test application required about 38ms to gen-

erate (with a pseudorandom generator) a LEAF-size
bit string, send it through the PCMCIA library to the
EES card and check the result. Since, on average, 216

random LEAFs must be generated and tested before
one with a valid checksum is found, a rogue PCM-
CIA application can search for a valid-looking LEAF
in 38 ∗ 216 ms, or 2,490,368 ms, which is about 42
minutes.
42 minutes obviously adds too much latency to

channel setup time to be useful in real-time applica-
tions such as secure telephone calls. For less interac-
tive applications, particularly secure electronic mail,
fax and file storage systems, such a delay may be ac-
ceptable. Furthermore, the attack has almost linear
speedup with parallel processing. With 60 PCMCIA
cards, a valid-looking LEAF could be expected in un-
der 45 seconds. Also, it may be reasonable to expect
several orders of magnitude reduction in search time
with more direct use of a Capstone or Clipper chip.
Since those devices are not expected to be made avail-
able for unrestricted use outside embedded products
(as the PCMCIA cards are), however, it is likely that
practical implementations of this attack will be limited

to applications that use the PCMCIA interface.
We implemented this attack for a simple encrypted

file storage application that we built as a testbed.
Other than the 30-50 minutes of latency added by
the LEAF search at encryption time (which is per-
formed “offline” from the user interface), the rogue
version is functionally identical to the version that fol-
lows the approved interface. In a storage application
the LEAF-search delay is almost completely transpar-
ent, since most user operation can proceed normally
prior to its completion. In store-and-forward messag-
ing applications, such as electronic mail, however, the
LEAF search delays message delivery. Whether this
is acceptable depends on the application; additional
computing resources, in the form of EES PCMCIA
cards (perhaps borrowed from nearby idle worksta-
tions) can reduce the delay. It may also be possible
for messaging applications to precompute session keys
and bogus LEAFs prior to their use, especially if the
number of possible recipients is small. We did not
implement any of these conveniences, however.
In interactive applications such as secure telephony,

the search time required for LEAF forgery during call
setup may render the technique impractical. Other
than parallel processing with additional EES devices,
there do not appear to be viable shortcuts for reducing
this search time. If call setup uses a negotiated key
exchange, the originator cannot generally predict the
session key and therefore cannot conduct the LEAF
search in advance. Neither do there appear to be
shortcuts to testing an average of 216 LEAF values.
The formulation of the problem, in which the attacker
need only discover some session key and corresponding
LEAF, seems at first blush to admit a so-called “birth-
day attack” requiring only

√
216 = 28 trials. However,

because the LEAF checksum is cryptographically pro-
tected by the family key, there appears to be no obvi-
ous way to perform the constant-time lookup on the
checksum required for each probe in such an attack.
Because no widely-deployed “official” EES PCM-

CIA applications existed at the time of this writing,
there were no third-party supplied systems available
against which we could exploit LEAF forgery tech-
niques. We have every reason to believe, however,
that building interoperable rogue versions of any non-
interactive PCMCIA application that implements an
open protocol would be a straightforward matter.

4 Discussion

The EES failure modes described in this paper do
not have the same semantic implications as protocol
failures in the classic sense. None of the methods given
here permit an attacker to discover the contents of en-
crypted traffic or compromise the integrity of signed



messages. Nothing here affects the strength of the sys-
tem from the point of view of the communicating par-
ties; indeed, in some sense these techniques increase
the security of EES-based protocols by eliminating the
LEAF as a source of attack.
Instead, these methods attack an unusual aspect

of EES requirements – the attempt to enforce access
for a third party who is not an active participant in
any part of EES-based communication. Once the sys-
tem has been deployed, there is little further that the
third party (the wiretapper) can do to protect its in-
terests. In effect, the wiretapper actively participates
in the protocol only by providing the narrow interface
to the tamper-resistant EES module that requires that
a LEAF be loaded prior to executing a decrypt opera-
tion. Our attacks thwart the wiretapper by using that
interface in unexpected ways.
In considering countermeasures to these attacks, it

is useful to divide the properties of the EES system
into three somewhat overlapping categories:

• Fundamental. This category includes the prop-
erties of any key escrow system in a particular
application domain (e.g., widely available compo-
nents, FIPS-81 compatibility, identifiable LEAFs,
etc.). These properties cannot be changed with-
out affecting the applicability of the system.

• Architectural. The basic properties of the system
decided upon early in the design process (e.g., the
size of the LEAF field, the crypto-synchronization
protocol, etc.). Changing the architecture re-
quires re-engineering of a significant fraction of
system components.

• Implementation. The characteristics of the ac-
tual EES devices and software. These can be
changed by replacing or modifying the compo-
nents in question.

In this paper we have focused primarily on weak-
nesses that are either fundamental or that arise from
the EES architecture. In particular, we did not at-
tempt to discover or exploit “bugs” in the prototype
EES devices.
It is not clear that it is possible to construct an

EES system that is both completely invulnerable to all
kinds of exploitation as well as generally useful. Let
us consider modifications to the EES interface that
frustrate the various attacks.
Non-interoperable applications are particularly

hard to prevent, since they are free to use the EES in-
terface in any way they choose. LEAF feedback tech-
niques can be discouraged by having devices recognize
(and refuse to accept) locally-generated LEAFs. This
would make the EES system difficult to deploy in legit-
imate secure storage applications, however, and such

restrictions could be circumvented easily by using two
devices on the receiving side, one for LEAF generation
and one for decryption.

The interoperable LEAF-search method can be
made less attractive by increasing the time required
to check a LEAF. The ability to do this is limited by
the fact that any reduction in LEAF-checking perfor-
mance also degrades the performance of legal applica-
tions. EES PCMCIA cards, on which LEAFs can be
feasibly searched for, already require approximately
38 ms to load an IV and LEAF. Slowing this to, say,
two seconds, would noticeably increase the setup time
for legitimate interactive traffic but only adds a factor
of 50 to the time required by the offline rogue LEAF
searcher (who could compensate with as much parallel
processing as desired).

Alternatively, EES devices could limit the number
of incorrect LEAFs they will accept (perhaps self-
destructing after some threshold has been reached),
or could impose a longer delay before returning the
result of an attempt to load an invalid LEAF. These
approaches are difficult to engineer reliably, however,
and greatly increase the vulnerability of the system
to denial-of-service attacks by an adversary who can
inject noise into a receiver’s datastream.

A more robust solution increases the size of the
LEAF checksum to 32 or 64 bits, making exhaustive
search infeasible. Since there is no “extra room” in the
existing 128 bit LEAF package, any increase in check-
sum size would necessitate either increasing the LEAF
size or reducing the size of the other LEAF fields. In-
creasing the size of the LEAF package to, say, 192
bits would provide room for an additional 64 bits of
checksum redundancy but would would likely require
significant re-engineering of many existing EES com-
ponents, from the processors themselves to the pro-
tocols and applications that use them. Within the
constraints of the 128 bit package, checksum size can
increase only at the expense of either the unit ID or
encrypted session key fields. The 32 bit unit ID field
appears to be at the minimum possible size given the
intended scope of the EES program (a previous ver-
sion of the LEAF with a 25 bit unit ID was considered
inadequate [NIST94a]). It may be possible to use bits
from the encrypted session key field to increase the
checksum size, at some expense in law enforcement
wiretap access performance. If only 64 bits of the en-
crypted session key were included in the LEAF, the
wiretapper could exhaustively search for the remain-
ing 16 bits at decrypt time. Such a search, with prop-
erly optimized hardware, would likely add at most a
few seconds to the decrypt time and would enable 32
bit LEAF checksums within the existing LEAF size
constraints.

Finally, a more drastic approach, which thwarts



non- interoperable as well as interoperable rogues, is to
sharply restrict the availability of EES devices to those
users and applications that are trusted not to abuse
them. PCMCIA cards, being inherently portable,
would need to be handled with particular care to avoid
their use by unauthorized individuals. Of course, it is
not at all clear that such restrictions could be made
effective or consistent with the goals of the EES pro-
gram, which aims to make the system widely available
to the public.

5 Conclusions

The EES attempts to balance the seemingly con-
flicting goals of making widely available a strong cryp-
tographic system while also ensuring government ac-
cess to encrypted traffic. Rogue applications defeat
EES by making use of the cipher without the govern-
ment “back door.” Whether rogues threaten the vi-
ability of the EES program depends on whether they
can be easily deployed for a significant fraction of the
traffic in their target application areas.
We have identified two classes of rogues. The most

general, those that can take unilateral action to inter-
operate with legal EES systems, are potentially the
most damaging to the EES program. These applica-
tions are functionally similar to their non-rogue coun-
terparts and have all the advantages of general inter-
operability without the risk of wiretapping. The tech-
niques used to implement them do carry enough of
a performance penalty, however, to limit their useful-
ness in real-time voice telephony, which is perhaps the
government’s richest source of wiretap-based intelli-
gence. The second class, those that can interoperate
only with other rogue devices explicitly designed to
thwart the LEAF, are also the easiest to implement
and the hardest to prevent. Devices in this class are
not as great a threat to the EES program as those in
the former class because they do not conform to offi-
cial interoperability standards. However, if the pop-
ulation of legal devices is substantially smaller than
that of rogue devices in a particular market, lack of
legal interoperability may not be a significant disad-
vantage.
It is worth noting that, with EES PCMCIA cards,

a rogue system can be constructed with little more
than a software modification to a legal system. Fur-
thermore, while some expertise may be required to
construct a rogue version of an existing system, it is
likely that little or no special skill would be required
to install and operate the modified software. In par-
ticular, one can imagine “patches” to defeat key es-
crow in EES-based systems being distributed over net-
works such as the Internet in much the same way that
other software is distributed today. Experience with

“pirate” cable TV descramblers, cellular telephone
access codes, and copy-protected PC software sug-
gests that rogue modifications to circumvent controls
on widely-deployed systems tend to emerge quickly
even when moderate safeguards against such modi-
fications are present. EES PCMCIA-based systems
appear to be particularly vulnerable to such abuse be-
cause the interface to the system is controlled com-
pletely in software on the user’s host computer. The
barriers to constructing a rogue software system are
much smaller than those to modifying and deploying
hardware-based rogue products, and the development
and proliferation of software modifications is very dif-
ficult to regulate in the presence of open standards
and communications networks.

6 Acknowledgments

Steve Bellovin, Whitfield Diffie, Joan Feigenbaum,
Peter Honeyman, Steve Kent, Jack Lacy, Tom Lon-
don, Dave Maher, Andrew Odlyzko, Rob Pike, Jim
Reeds, Mike Reiter and Bruce Schneier offered innu-
merable comments that have greatly improved this pa-
per. The suggestion to use bits from the encrypted
session key to augment the checksum size arose from
discussions with Steve Bellovin. We would like to es-
pecially acknowledge the generous assistance of vari-
ous individuals at NSA in providing us with prototype
EES PCMCIA cards and technical data. We are par-
ticularly grateful for the spirit of openess and colle-
giality displayed by the members of NSA in reviewing
these results.
The author remains, of course, solely responsible

for any errors in this paper.
The name “Tessera” is a trademark of Tessera, Inc.,

which neither produced nor licensed the government-
supplied EES PCMCIA cards to which we refer in this
paper. We know of no connection between Tessera,
Inc. and the EES program. Previous references to
EES PCMCIA cards as “Tessera cards” appear to have
been made in error.

7 Postscript

Some of the results in this paper are based on ex-
periments conducted with pre-release prototype EES
PCMCIA cards and software obtained from NSA. The
production version of the EES PCMCIA system will
likely exhibit different performance characteristics and
have a different interface from the version we exam-
ined. The reader is cautioned to view any experimen-
tal results presented here as a “proof of concept” and
not as representative of the exact performance of the



final system. We understand that NSA intends to in-
corporate features to discourage these attacks into fu-
ture versions of EES devices.

References

[DH76] W. Diffie and M. E. Hellman. New di-
rections in cryptography. IEEE Trans. on

Information Theory, November 1976.

[Mar93] J. Markoff. Communications plan to bal-
ance government access with privacy. New

York Times, April 16, 1993.

[NBS77] National Bureau of Standards. Data
Encryption Standard, Federal Information

Processing Standards Publication 46, Gov-
ernment Printing Office, Washington, D.
C., 1977.

[NBS80] National Bureau of Standards. Data En-
cryption Standard Modes of Operation,
Federal Information Processing Standards

Publication 81, Government Printing Of-
fice, Washington, D.C., 1980.

[NIST94] National Institute for Standards and Tech-
nology. Escrowed Encryption Standard,
Federal Information Processing Standards

Publication 185, U.S. Dept. of Commerce,
1994.

[NIST94a] National Institute for Standards and Tech-
nology. Technical Fact Sheet on Blaze Re-

port and Key Escrow Encryption. June 15,
1994.


